On Thermodynamically Compatible Finite Volume Methods and Path-Conservative ADER Discontinuous Galerkin Schemes for Turbulent Shallow Water Flows

نویسندگان

چکیده

Abstract In this paper we propose a new reformulation of the first order hyperbolic model for unsteady turbulent shallow water flows recently proposed in Gavrilyuk et al. (J Comput Phys 366:252–280, 2018). The novelty formulation forwarded here is use evolution variable that guarantees trace discrete Reynolds stress tensor to be always non-negative. mathematical particularly challenging because one important subset equations nonconservative and products also act across genuinely nonlinear fields. Therefore, consider thermodynamically compatible viscous extension necessary define proper vanishing viscosity limit inviscid absolutely fundamental subsequent construction numerical scheme. We then introduce two different, but related, families methods its solution. scheme provably semi-discrete finite volume makes direct Godunov form can therefore called formalism . method mimics underlying continuous system exactly at level thus consistent with conservation total energy, entropy inequality model. second general purpose high path-conservative ADER discontinuous Galerkin element posteriori subcell limiter applied as well Both schemes have common they make path integrals jump terms interfaces. different are compared each other (2018) on example three Riemann problems. Moreover, comparison fully resolved solution small parameter (vanishing limit). all cases an excellent agreement between achieved. furthermore show convergence rates ADER-DG up sixth space time present test problems where compare available experimental data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mass conservative BDF-discontinuous Galerkin/explicit finite volume schemes for coupling subsurface and overland flows

Robust and accurate schemes are designed to simulate the coupling between subsurface and overland flows. The coupling conditions at the interface enforce the continuity of both the normal flux and the pressure. Richards’ equation governing the subsurface flow is discretized using a Backward Differentiation Formula and a symmetric interior penalty Discontinuous Galerkin method. The kinematic wav...

متن کامل

Discontinuous Galerkin finite element method for shallow two-phase flows

We present a discontinuous Galerkin finite element method for two depth-averaged two-phase flow models. One of these models contains nonconservative products for which we developed a discontinuous Galerkin finite element formulation in Rhebergen et al. (2008) J. Comput. Phys. 227, 1887-1922. The other model is a new depth-averaged two-phase flow model we introduce for shallow two-phase flows th...

متن کامل

Space-time Discontinuous Galerkin Method for Rotating Shallow Water Flows

In the present work, we analyze the rotating shallow water equations including bottom topography using a space-time discontinuous Galerkin finite element method. The method results in non-linear equations per element, which are solved locally by establishing the element communication with a numerical HLLC flux. To deal with spurious oscillations around discontinuities, we employ a stabilization...

متن کامل

High Order Finite Difference and Finite Volume WENO Schemes and Discontinuous Galerkin Methods for CFD

In recent years high order numerical methods have been widely used in computational uid dynamics (CFD), to e ectively resolve complex ow features using meshes which are reasonable for today's computers. In this paper we review and compare three types of high order methods being used in CFD, namely the weighted essentially non-oscillatory (WENO) nite di erence methods, the WENO nite volume metho...

متن کامل

High-Order Discontinuous Galerkin Methods for Turbulent High-lift Flows

In this work a robust discontinuous Galerkin (DG) solver for turbulent high-lift aerodynamic flows using the turbulence model of Spalart and Allmaras (SA) is developed. The application of DG discretizations to turbulent RANS flows is one of the most pressing issues facing high-order methods on unstructured grids. The issue is the result of non-smooth behavior of the turbulence model equation, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Scientific Computing

سال: 2021

ISSN: ['1573-7691', '0885-7474']

DOI: https://doi.org/10.1007/s10915-021-01521-z